572 research outputs found

    Air frame drag balance Patent

    Get PDF
    Device for measuring drag forces in flight test

    cGMP kinase I regulates glucagon release

    Get PDF
    © 2009 Leiss et al; licensee BioMed Central Ltd. Blood glucose levels are tightly controlled by the two peptide hormones glucagon and insulin. At hyperglycaemia, B-cells in the islets of Langerhans secrete insulin, whereas islet A-cells release glucagon at hypoglycaemia to stimulate e.g. glucose production in the liver. Previously, an important role for nitric oxide (NO) in the development of type-1 diabetes mellitus (insulin dependent diabetes mellitus) was reported [1]. The mechanisms are unknown whereby NO modulates islet (mal-)function. We hypothesized that NO signals via the cGMP/cGMP kinase I (cGKI) pathway to modulate the endocrine control of blood glucose levels. Glucose homeostasis was studied in the conventional cGKI knockouts (KOs) and in cGKI rescue mice (RM) [2] in comparison to age- and littermat

    The Machine Learning Landscape of Top Taggers

    Full text link
    Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.Comment: Yet another tagger included

    Quotient Complexity of Regular Languages

    Full text link
    The past research on the state complexity of operations on regular languages is examined, and a new approach based on an old method (derivatives of regular expressions) is presented. Since state complexity is a property of a language, it is appropriate to define it in formal-language terms as the number of distinct quotients of the language, and to call it "quotient complexity". The problem of finding the quotient complexity of a language f(K,L) is considered, where K and L are regular languages and f is a regular operation, for example, union or concatenation. Since quotients can be represented by derivatives, one can find a formula for the typical quotient of f(K,L) in terms of the quotients of K and L. To obtain an upper bound on the number of quotients of f(K,L) all one has to do is count how many such quotients are possible, and this makes automaton constructions unnecessary. The advantages of this point of view are illustrated by many examples. Moreover, new general observations are presented to help in the estimation of the upper bounds on quotient complexity of regular operations

    Detection of Prion Protein in Urine-Derived Injectable Fertility Products by a Targeted Proteomic Approach

    Get PDF
    BACKGROUND: Iatrogenic transmission of human prion disease can occur through medical or surgical procedures, including injection of hormones such as gonadotropins extracted from cadaver pituitaries. Annually, more than 300,000 women in the United States and Canada are prescribed urine-derived gonadotropins for infertility. Although menopausal urine donors are screened for symptomatic neurological disease, incubation of Creutzfeldt-Jakob disease (CJD) is impossible to exclude by non-invasive testing. Risk of carrier status of variant CJD (vCJD), a disease associated with decades-long peripheral incubation, is estimated to be on the order of 100 per million population in the United Kingdom. Studies showing infectious prions in the urine of experimental animals with and without renal disease suggest that prions could be present in asymptomatic urine donors. Several human fertility products are derived from donated urine; recently prion protein has been detected in preparations of human menopausal gonadotropin (hMG). METHODOLOGY/PRINCIPAL FINDINGS: Using a classical proteomic approach, 33 and 34 non-gonadotropin proteins were identified in urinary human chorionic gonadotropin (u-hCG) and highly-purified urinary human menopausal gonadotropin (hMG-HP) products, respectively. Prion protein was identified as a major contaminant in u-hCG preparations for the first time. An advanced prion protein targeted proteomic approach was subsequently used to conduct a survey of gonadotropin products; this approach detected human prion protein peptides in urine-derived injectable fertility products containing hCG, hMG and hMG-HP, but not in recombinant products. CONCLUSIONS/SIGNIFICANCE: The presence of protease-sensitive prion protein in urinary-derived injectable fertility products containing hCG, hMG, and hMG-HP suggests that prions may co-purify in these products. Intramuscular injection is a relatively efficient route of transmission of human prion disease, and young women exposed to prions can be expected to survive an incubation period associated with a minimal inoculum. The risks of urine-derived fertility products could now outweigh their benefits, particularly considering the availability of recombinant products

    Regulatory T cell-deficient scurfy mice develop systemic autoimmune features resembling lupus-like disease

    Get PDF
    Introduction: Scurfy mice are deficient in regulatory T cells (Tregs), develop a severe, generalized autoimmune disorder that can affect almost every organ and die at an early age. Some of these manifestations resemble those found in systemic lupus erythematosus (SLE). In addition, active SLE is associated with low Treg numbers and reduced Treg function, but direct evidence for a central role of Treg malfunction in the pathophysiology of lupus-like manifestations is still missing. In the present study, we characterize the multiorgan pathology, autoantibody profile and blood count abnormalities in scurfy mice and show their close resemblances to lupus-like disease. Methods: Scurfy mice have dysfunctional Tregs due to a genetic defect in the transcription factor Forkhead box protein 3 (Foxp3). We analyzed skin, joints, lung and kidneys of scurfy mice and wild-type (WT) controls by conventional histology and immunofluorescence (IF) performed hematological workups and tested for autoantibodies by IF, immunoblotting and enzyme-linked immunosorbent assay. We also analyzed the intestines, liver, spleen and heart, but did not analyze all organs known to be affected in scurfy mice (such as the testicle, the accessory reproductive structures, the pancreas or the eyes). We transferred CD4+ T cells of scurfy or WT mice into T cell-deficient B6/nude mice. Results: We confirm previous reports that scurfy mice spontaneously develop severe pneumonitis and hematological abnormalities similar to those in SLE. We show that scurfy mice (but not controls) exhibited additional features of SLE: severe interface dermatitis, arthritis, mesangioproliferative glomerulonephritis and high titers of anti-nuclear antibodies, anti-double-stranded DNA antibodies, anti-histone antibodies and anti-Smith antibodies. Transfer of scurfy CD4+ T cells (but not of WT cells) induced autoantibodies and inflammation of lung, skin and kidneys in T cell-deficient B6/nude mice. Conclusion: Our observations support the hypothesis that lupus-like autoimmune features develop in the absence of functional Tregs

    Kank Is an EB1 Interacting Protein that Localises to Muscle-Tendon Attachment Sites in Drosophila

    Get PDF
    Little is known about how microtubules are regulated in different cell types during development. EB1 plays a central role in the regulation of microtubule plus ends. It directly binds to microtubule plus ends and recruits proteins which regulate microtubule dynamics and behaviour. We report the identification of Kank, the sole Drosophila orthologue of human Kank proteins, as an EB1 interactor that predominantly localises to embryonic attachment sites between muscle and tendon cells. Human Kank1 was identified as a tumour suppressor and has documented roles in actin regulation and cell polarity in cultured mammalian cells. We found that Drosophila Kank binds EB1 directly and this interaction is essential for Kank localisation to microtubule plus ends in cultured cells. Kank protein is expressed throughout fly development and increases during embryogenesis. In late embryos, it accumulates to sites of attachment between muscle and epidermal cells. A kank deletion mutant was generated. We found that the mutant is viable and fertile without noticeable defects. Further analysis showed that Kank is dispensable for muscle function in larvae. This is in sharp contrast to C. elegans in which the Kank orthologue VAB-19 is required for development by stabilising attachment structures between muscle and epidermal cells

    Fast analysis of antibody-derived therapeutics by automated multidimensional liquid chromatography - mass spectrometry

    Get PDF
    Characterization of post-translational modifications (PTMs) of therapeutic antibodies is commonly performed by bottom-up approaches, involving sample preparation and peptide analysis by liquid chromatography-mass spectrometry (LC-MS). Conventional sample preparation requires extensive hands-on time and can increase the risk of inducing artificial modifications as many off-line steps - denaturation, disulfide-reduction, alkylation and tryptic digestion - are performed. In this study, we developed an on-line multidimensional (mD)-LC-MS bottom-up approach for fast sample preparation and analysis of (formulated) monoclonal antibodies and antibody-derived therapeutics. This approach allows on-column reduction, tryptic digestion and subsequent peptide analysis by RP-MS. Optimization of the 1D -and 2D flow and temperature improved the trapping of small polar peptides during on-line peptide mapping analysis. These adaptations increased the sequence coverage (95-98% versus 86-94% for off-line approaches) and allowed identification of various PTMs (i.e. deamidation of asparagine, methionine oxidation and lysine glycation) within a single analysis. This workflow enables a fast (<2 h) characterization of antibody heterogeneities within a single run and a low amount of protein (10 mu g). Importantly, the new mD-LC-MS bottom-up method was able to detect the polar, fast-eluting peptides: Fc oxidation at Hc-Met-252 and the Fc N-glycosylation at Hc-Asn-297, which can be challenging using mD-LC-MS. Moreover, the method showed good comparability across the different measurements (RSD of retention time in the range of 0.2-1.8% for polar peptides). The LC system was controlled by only a standard commercial software package which makes implementation for fast characterization of quality attributes relatively easy. (C) 2021 The Author(s). Published by Elsevier B.V.Proteomic

    Detection of Prion Protein in Urine-Derived Injectable Fertility Products by a Targeted Proteomic Approach

    Get PDF
    BACKGROUND: Iatrogenic transmission of human prion disease can occur through medical or surgical procedures, including injection of hormones such as gonadotropins extracted from cadaver pituitaries. Annually, more than 300,000 women in the United States and Canada are prescribed urine-derived gonadotropins for infertility. Although menopausal urine donors are screened for symptomatic neurological disease, incubation of Creutzfeldt-Jakob disease (CJD) is impossible to exclude by non-invasive testing. Risk of carrier status of variant CJD (vCJD), a disease associated with decades-long peripheral incubation, is estimated to be on the order of 100 per million population in the United Kingdom. Studies showing infectious prions in the urine of experimental animals with and without renal disease suggest that prions could be present in asymptomatic urine donors. Several human fertility products are derived from donated urine; recently prion protein has been detected in preparations of human menopausal gonadotropin (hMG). METHODOLOGY/PRINCIPAL FINDINGS: Using a classical proteomic approach, 33 and 34 non-gonadotropin proteins were identified in urinary human chorionic gonadotropin (u-hCG) and highly-purified urinary human menopausal gonadotropin (hMG-HP) products, respectively. Prion protein was identified as a major contaminant in u-hCG preparations for the first time. An advanced prion protein targeted proteomic approach was subsequently used to conduct a survey of gonadotropin products; this approach detected human prion protein peptides in urine-derived injectable fertility products containing hCG, hMG and hMG-HP, but not in recombinant products. CONCLUSIONS/SIGNIFICANCE: The presence of protease-sensitive prion protein in urinary-derived injectable fertility products containing hCG, hMG, and hMG-HP suggests that prions may co-purify in these products. Intramuscular injection is a relatively efficient route of transmission of human prion disease, and young women exposed to prions can be expected to survive an incubation period associated with a minimal inoculum. The risks of urine-derived fertility products could now outweigh their benefits, particularly considering the availability of recombinant products
    corecore